Lowest cost and easiest way to eliminate green hair, bubble, turf and slime algae

Air Pump Recommendations for UAS® upflow algae scrubbers®. Having bought and tried all of these, here are the best ones:

Flow (highest to lowest):

Coralife Super Luft... TONS of flow for multiple outlets or multiple scrubbers
Tetra Whisper 300... High flow if both outlets are combined into one
JW Aquatic Fusion 700... High flow if both outlets are combined into one
Tetra Whisper 150... Good flow for one outlet
Coralife Luft (regular)... Good flow for one outlet

Noise (most to least):

Coralife Super Luft... (Loud; vibrates)
Coralife Luft (regular)... (Vibrates)
JW Aquatic Fusion 700... Slight vibration
Tetra Whisper 300... Silent
Tetra Whisper 150... Silent

Size: (big to small):

Tetra Whisper 300... Large
JW Aquatic Fusion 700... Medium
Coralife Super Luft... Medium
Tetra Whisper 150... Medium
Coralife Luft (regular)... Small

Cost (most to least):

Coralife Super Luft
Coralife Luft (regular)
Tetra Whisper 300
Tetra Whisper 150
JW Aquatic Fusion 700

Overall winner for a single UAS scrubber used at home: JW Aquatic Fusion 700 (also is the only one with adjustable flow)
Overall winner for multiple UAS scrubbers if noise if ok: Coralife Super Luft

Oct 17, 2011
Santa Monica, CA, USA
1982: The original dump-bucket style algae scrubber (works, but very hard to build, install, operate, and harvest)

2008: Waterfall style algae scrubber (works good but hard to build and install; must be removed to harvest)

2011: Upflow style scrubber (work goods, easier to build and install on the glass; must be removed to harvest)

2013: ??? (work great, all 3D growth, easy to build, and instant in-place harvesting without needing to remove anything or turn anything off).


Superstar Fish
Jun 2, 2010
Yelm, WA
Otos seem to do the best job of eating the algae off the glass, but I have noticed the mollies doing a fair job on the artificial plants and ornaments. Nobody does a complete job.

Feb 18, 2013
Side note, my wife purchased the parts for a 3d printer (Prusa Mendel I2) for me for our anniversary, the rest of the parts should be in soon, one of my first projects is to print a couple of valves, and an inline algae scrubber. I'd be glad to share the blueprints once I have the bugs worked out, or print for cost of materials + shipping.

Summary of 3D printing links:

Endless things to print:
Thingiverse - Digital Designs for Physical Objects

General forum for all printers:

Massive forum for lots of printer kits and DIY:
RepRap Forums

Current lowest-cost assembled printer to print aquarium-safe ABS plastic:
The Buccaneer® - The 3D Printer that Everyone can use! by Pirate3D Inc :: Kicktraq

Current most popular U.S. based assembled printer:

Low cost Chinese clone of Makerbot:
Flashforge 3D printer

Another low cost Chinese clone of Makerbot:
3D printer

Phosphate flow out of rocks

Many people, when they get their scrubber running for the first time, get worried when more (not less) algae starts to grow on their rocks. It seems really strange, especially when nitrate and phosphate have gone lower than before. What is happening is that phosphate is coming out of the rocks. Remember, phosphate is invisible, so you can only see the effects of it, and it always "flows" from higher concentrations to lower concentrations (just like heat does).

Example: If your room is warm, and you put a cold object on the floor, heat from the air in the room will "flow" into the object until the object and the air are the same temperature. Example 2: If you put a hot object on the floor, heat will "flow" out of the object and go into the air in the room, again, until the air and the object are the same temperature. Now suppose you open your windows (in the winter). The warm air in your room will go out the windows, and it will get colder in the room. The object on the floor is now warmer than the air, so heat will flow out of the object and into the air, and then out the window.

Think of phosphate as the heat, and your rocks as the object, and your windows as the scrubber. As the scrubber pulls phosphate out of the water, the phosphate level in the water drops. Now, since the phosphate level in the water is lower than the phosphate level in the rocks, phosphate flows from the rocks into the water, and then from the water into the scrubber. This continues until the phosphate levels in the rocks and water are level again. And remember, you can't see this invisible flow.

This flow causes an interesting thing to happen. As the phosphate comes out of the rocks, it then becomes available to feed algae as soon as the phosphate reaches the surface of the rocks where there is light. So, since the surface of the rocks is rough and has light, it starts growing MORE algae there (not less) as the phosphate comes out of the rocks. This is a pretty amazing thing to see for the first time, because if you did not know what was happening you would probably think that the algae in the scrubber was leaking out and attaching to your rocks. Here are the signs of phosphate coming out of the rocks:

1. The rocks are older, and have slowly developed algae problems in the past year.

2. The scrubber is new, maybe only a few months old, and has recently started to grow well.

3. Nitrate and phosphate measurements in the water are low, usually the lowest they have been in a long time.

4. Green hair algae (not brown) on the rocks has increased in certain spots, usually on corners and protrusions at the top.

5. The glass has not needed cleaning as much.

Since skimmers, filter socks, etc don't remove any nitrate and phosphate, and waterchanges and macro's in a fuge don't remove much, most people have never seen the effects of large amounts of phosphate coming out of the rocks quickly. But sure enough, it does. How long does it continue? For 2 months to a year, depending on how much phosphate is in the rocks, how strong your scrubber is, and how many other phosphate-removing filters you have (GFO, carbon dosing, etc). But one day you will see patches of white rock that were covered in green hair the day before; this is a sure sign that the algae are losing their phosphate supply from the rocks and can no longer hold on. Now it's just a matter of days before the rocks are clear.

Advanced Aquarist Feature Article for December 2013: Coral Feeding: An Overview
Feature Article: Coral Feeding: An Overview — Advanced Aquarist | Aquarist Magazine and Blog

The picture in the article shows that in the 1000 litre test tank:

98% of the food particles go to the skimmer when there are 2 coral colonies
71% of the food particles go to the skimmer when there are 40 coral colonies
92% of the food particles go to the skimmer when there are 2 coral colonies, when skimming is cut in half
55% of the food particles go to the skimmer when there are 40 coral colonies, when skimming is cut in half

"This trade-off between food availability and water quality can be circumvented by using plankton-saving filtration systems, which include [...] algal turf scrubbers"

"Corals are able to feed on a wide range of particulate organic matter, which includes live organisms and their residues and excrements (detritus)."

"...bacteria [...] can be a major source of nitrogen."

"...when dry fish feeds or phytoplankton cultures are added to an aquarium, a part of this quickly ends up in the collection cup of the skimmer.

"...mechanical filters (which can include biofilters and sand filters) result in a significant waste of food."

"Detritus is a collective term for organic particles that arise from faeces, leftover food and decaying organisms. Detrital matter is common on coral reefs and in the aquarium, and slowly settles on the bottom as sediment. This sediment contains bacteria, protozoa, microscopic invertebrates, microalgae and organic material. These sedimentary sources can all serve as coral nutrients when suspended, especially for species growing in turbid waters. Experiments have revealed that many scleractinian corals can ingest and assimilate detritus which is trapped in coral mucus. Although stony corals may ingest detritus when it is available, several gorgonians have been found to primarily feed on suspended detritus."

"Dissolved organic matter (DOM) is an important food source for many corals. [...] scleractinian corals take up dissolved glucose from the water. More ecologically relevant, corals can also absorb amino acids and urea from the seawater"